THEORY OF ULTRASONIC WAVE PROPAGATION
IN POLYCRYSTALLINE MEDIA

A. A. Usov, A. G. Fokin, UDC 534.22
and T. D, Shermergor

A method described in [1] is used to investigate the propagation of long and short ultrasonic waves in a
polycrystalline medium having orthorhombic symmetry. The attenuation and dispersion of the velocity of elas-
tic waves due to wave scattering by inhomogeneities are calculated. The special cases of tetragonal, hexag-
onal, and cubic symmetry are analyzed. The results are compared with the data of [2] on scattering inthe
long-wave approximation as well as with the results of {1, 3] on scattering in higher-symmetry polycrys-~
talline media.

1. The propagation of elastic waves in inhomogeneous media is attended by scattering at structural
inhomogeneities and a corresponding dispersion of the propagation velocity. This effect was first analyzed
within the framework of the theory of stochastic functions by Lifshits and Parkhomovskii [11 for polycrys-
talline materials having a cubic structure. Later the scattering of waves in polycrystalline media was in-
vestigated for cases of lower symmetry: hexagonal [3] and orthorhombic [2]. In the latter case, however,
only the wave attenuation in the long-wave approximation was calculated, where the wavelength greatly ex-
ceeds the characteristic dimensions of the crystal grains., The development of gigahertz techniques, on the
other hand [3], requires the analysis of the short-wave asymptotic behavior as well. In the present article,
therefore, we calculate the scattering coefficient and velocity dispersion for ultrasound propagating in ortho-
rhombic polycrystalline media for both short and long waves, relying on the method of [1].

The analysis is based on the calculation of the second-rank tensor Cjj:

Cil = Ciklmlklm (1.1)
“Cigim == Aiﬁ’ié’qust {1.2)

Here Ag?%(}n denotes the tensor part of the binary correlation tensor elastic modulus Ajkpg:

AZRL () = {Dhikpo (€) = Chipad] st @©) — hogrrm D1 4 (1.3)

i = q3/q is the unit vector in the direction of wave propagation, Cik [y is the correlation correction to the
average tensor elastic modulus, and

Ipqst = K.mzst + inqst = j’ Gps (1') [ (r) cosgrj,y, dr (1.4)

The subscripts following the comma in this case signify differentiation with respect to the indicated
coordinates, Gpg is the Green tensor of the wave equation for a medium having the average elastic moduli
{AikIm), and ¢ (r) is the coordinate part of the correlation tensor (1.3).

2. Hereinafter we indicate variables referring to long (9@ < 1) and short (ga > 1) waves by subscript
minus and plus signs, respectively. Here a is the correlation scale.
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Expressions for Ipggt in the long- and short-wave approximations are given in [1]. Correcting some
misprints, we now write the appropriate equations:

Kogst = K;qst +<a?) (’)2K117qst 2.1)
Kpon = 25 {80 12 (85185 + 8pq8ut) — 38548141 — ShoByue} 2.2)

Kl = —;—{T‘% (36581g — 4 (Bptug + OpoBas) + 3 (2Lt + 2Uplidoq +

i - y
2Ll -+ 2k g + 2pldg — BlaliBun)] 4 - (8pbrg — 3lqz,a,,s)} +

+ 2{-E (48,1800 -+ 8u8p0) — pudar] -+ —p-BgiBya) (2.3)
Liger = <835 0® [(8po8s1 + OpiBsq) 82 + 8psBqi 23] 2.4)

: L1 -8 Ll (Ll —08,)<axg
(I;qsl))r: - qpt {— £ 4e,? =+ cl?m—c'2 +i-+ 20; ) l} 2.5)
. zzt{ Ll —8,, L, . L, } (2.6)

(Ipqst)+ = - qp - 5'2 . c;z.) + 4";12 —i 2212 <d> T
in which

<a?y = 4mn _2 e(yrdr, <(d® = 4ﬂ§¢(r) ridr, (e} = igq)(r) dr 2.7

Here w =27y is the cyclic frequency, and ¢; and ci are the longitudinal and transverse wave veloc-
ities of sound in the Voigt approximation:

= t@t By o= (B (2.8)

The quantities gj and h; are defined by Eqgs. (36) of [1].
Substituting expressions (2.1)-{2.6) into Eq. (1.2), we find

Cii = o2 [80 (bl Aftins — Lyl ABSE) — Shiglyl, AR+ (@ 0 | (— Ll ABSE — Alidm ik + Shillol AT

_ 101

h 2 2h )

+ '12lklmlplqA:;l;171] + "15% [lklmAﬁtq}iZ‘ - 3lklmlqlsAgﬁzl)zl] + —]gg- [3lklmA‘3qu£;n + 4lklmA:;l;;»] + '—32' lklmAflgllNT} +
+ i<a®) 0® [l Afipegs + il Alie (85 + 2h5)] (279)

5e 2 —c 2 , (o | 1 s fay
(O = — Wbt (gt + ) — Wl B (e — 28] (2.10)
5¢2—¢?2 | BRCOY RS 1 '

(Cz'll)+ = - lklmlslllqlpAzlttgz ( 490121(012,_‘0‘2) — 1 2pcl3 ) + lklmlthA?lzzlg W ‘ (2 '11)

The quantities Cii:l and C{l are found from (2.9) by the appropriate substitution c—~c¢tor c—ci.
3. In order to calculate the various contractions of the autocorrelation tensor Afﬁé’él that determine

the tensor Cji according to Eqs. (2.9)-(2.11), we use the explicit value found in [5] for this tensor in the case
of orthorhombic symmetry (allowing for the fact that the coefficient of PaAdijki Opqrs is equal to —21/5) . Af-
ter some simple but laborious computations we obtain

190



LimpaAingg = Ay -+ As8yy, Lem ASiiny = Agly + Aady

‘ (3.1)
lkaSAzlﬂ)gg = Asli: + Asau’ lkmAfi%gL = A-,l“ -+ A36il
ikmsiqugilz;Z = Asiil + Aloail
where
Limpeer = Lidmlp... 7
A, = 5/344 = 1/63 (3P + 16Pyy + 26P5, + 21 Py -+ T0P,, + 56P,,)
A3 = 1/3A4 = ’1/45 (Plx -+ GP)‘-\J, -+ 825, -+ 9Pp_u + 24PW + 16va)
Ay = o (112P3, 4+ 12 SIAMAD 4 5T0Ps, + 10702y, 4 665Py, + 2660Py, + 2415P,,)
Ag = oo (24 DAOMD 1 14P, +90Pay + 250P;, + 105Py, + 420Py, + BB5P.) (3.2)
A, = 15,15“ (3 Z 0N 4 18Py - 110Ps - 160P;, + 165P, - 440P,, |- 340P.,)
Ay = e (9 DAAD - 4Pso +30Psy + 80Py, 4 45P, - 120P,, + 220P,.)
T
4, = 15_17” (6 DIAOA® 4 81, + 390Pn, + T8OP,, + 455y, - 1820Py, 4 1820P,.)
Ay = 15?7” (10 DA™ 4 A5P3, + 90Puy + 180Ps, + 105Py + 420Py, + 420P.)
1 3 3 3
Py=-g- ( 3 D) ampm — Siam ) pL<m>> (3.3)

The elastic coefficients A{® , u{, and y(™) are expressed in terms of the matrix elastic constants by
the following equations given in [5]:

A == g4y 4 Cop A 2044 — (612 045 + 2055 + 2¢44)
A = ¢op 4 35 + 25y — €1y + Cag - 204y + 2cq0)
M = ggy - ¢y 4 2068 — (€13 4 Cy5 + 2244 - 2055)
20 =y fogg— oy, 20 =ty — oy
200 = ey |- 0y — €4y, 200 = ¢5 + €5 — €y
2V = gy b egg — 55 2V = gy + o5 — g (3.4)

Now, if we substitute expressions (3.1) into Egs. (2.9)-(2.11), we can reduce each of the latter equa-
tions to the form

Cyy = [a* () + B* (w)] li?l + B* (0) 85, (3.5)

The real parts oy and 8y and imaginary parts o, and B, of the effective Lamé coefficients o*(w) and
B*(w) determine the absorption coefficients and velocity dispersion:

’ 2 2B
) = S o) = ) 6.6
v (0) = ¢, [4 4 B+ oz)p(fﬁ‘ (0)/da) ]
0 () = & [1 O Tk 0l o) oute) + 2 o) ] 3.7
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Hence, inserting the explicit values of o4 and g we find

- 4mB <aB) f* B By . il i) f* [ Bs By
T = ———sf;ic—ls———( 2015 + ct5 ’ 'rt 5920t3 2015 + 625 (3.8)
v ()=l —ay—a,<a® ), v =c(l—a3—a <a® % (3.9)
a?<ay f2 72 ¢a f>
Yl+ = chls By, 7t+ = pzctu Bm (5.1
vit=c(l+a), vF=¢c(l+ag (3.11)
41 ) Bi 2B, _ 1 Bs - Bs + 42Bs ¥

= 10p%c; ( P el ) v B = T0p%2 \ ¢ c el ¢’
1 By 2By o 21Bs 2B, By (3.12)

e e o i )

4012311 —_ (5612 — Cta) By . (55152 - clﬂ) By 4 (6‘2 - 0;2) Bu
Bp%e,t (¢ — ¢ ’ 8§~ T 3920‘4 Cr—cp

g = \

Here

B; = 1/3 (2Aa + 2A7 + 4/3‘44): Bz = 1/6 (3As + 3A7 e ‘;"3141)
Bs =1y (244 4 A4), B4 =14 (345 — A4)
By =10(A; + Ag) +12(A; + A) 4 2fpdy + 164y By =9(As 4 49— 3(4; + 4 + %54, — 164,  (3.13)
By = 6A;+ 34, — 24, — A, By = 184, + 94, — 54, — 64,

By, = Ay + Ay, Byp = Ag — 4y
By, = A5 + A, B, = B,
By = Aygs By = 4,

The constants Aji are calculated according to Egs. (3.2)~(3.4). The average Lamé constants, which
according to (2.8) determine the ultrasonic velocities ¢; and ct, are equal to

3 3

@ = QMM+ 2p™), (B = D (k™ 4 2y (3.14)

n n

The elastic coefficients A(M), p(M), and v (1) are given by relations (3.4).

The foregoing result (3.8)-(3.12) can be written, in the notation of [2], in terms of the double-index
elastic constants cjk by means of relations (3.13), (3.2), (3.3), and (3.4) as follows:

By = ®loz5 P* + ®lyg5 (4by + 2b, + 3by + by)
B, = By = ¥aas P* -+ Y55 (24, 4 Tb, + 1365 + b)) . (3.15)
B, = 1"Pmo p +1]90 (128, + by + 4b; — 2by)
B, = 8,55 (53P% 4 1000b, -+ 665b, + 630b, - 2805, -+ 120b, — 180b,)

By = 4B, ="%/,55 (6P% -+ 30b, - 70b, — 140b, — 35b, -+ 75b; — 165b,)
By = Yy (30P% -+ 591b, + 49b, 4 196bs — 98b, — 3b, — 6by)
By = By, = My (P? + 20D, + 20b, + 5bg + 5b, + 10b; — 10bg)
By = Yanes (14P? + 295b; + 25b, + 100b, — 500, 4 5b, + 10b,)
By = %155 (6P 4 100b; 4 75b, + 25b, + 15b, 4 30b; — 50b,)
By = Yays (2P% 4 28b, -+ 13b, + Tby - b, + 2bs — 14by)
By, = Y55 (8P 4 145b, - 30b, + 45b; — 15b, + 5b, — 20b,)

where

P = ey + €3 + cag) — (€19 + ¢35 + €33) — 2{c4y + €55 + c49)
by = (caa + €55 + o) — 3 (CaCss + C55Ces + CosCas)
e = (e + Cap +Cg9)* — 3 (?11022 = CanCss + cascyy) (3.16)
= (c1a F €13 + €29)® — B(cyalrs + CraCas + Caatys)
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By = cyy(cyy + €13 — 2653) + CpalCry + €5 — 264) + €33 (c1s -+ €33 — 2¢5)
by = ¢y; (€55 + Cop — 2640) F Cas (cas + €55 — 2c55) + 33 (cag + €55 — 2c40)
by = Cyg (€55 + o5 — 2¢a0) + €13 (Caa + Co — 2655) + c1o (Caa + 55 — 2c40)

and

(ad =Yy [{eyy + cos -+ €33) + 4ez + €13 -+ Cop) — 2(cgy + c55 + C44)]
B> = Y5 [{ery +Can + €33) — (12 + €13 F €aa) - 3(eaq + €55 + ool (3.17)

4. The expressions found above for the long-wave scattering coefficients (3.8) exactly coincide with
the results of [2] (see also [6]) if we assume that (a® =T, where T is the average volume of the actualgrain.
This fact is evident from (3.8) if we evaluate By, ..., B, accordingto (3.15). In order to express the disper-
sion and scattering coefficients for short waves [see expressions (3.9)-(3.12), (3.15), and (3.16)] we have
augmented the parameters P, by, ..., by of [2] with two additional parameters b; and b.

For tetragonal symmetry {Cqy = Cyy, Co3 = C13, Cs5 = Cyy) the results can be deduced from Egs. (3.8)-
(3.12), (3.15), and (3.16) by the use of the relations '

P = ks + 3N, by =A% by = (Ag + 2hy + 407, by = A7 (4.1)
by = 2&y {(hg + 2hy + 4hg), b = 2hg(hg - 28y + 4hg), b = — 2hhg
in which A are the one-—index elastic constants described, according to [5], by the expressions

Ay = Ca, Ay == Cgq, My = C33 — €y — 2 (013 — C1p + 2¢4 — 2¢45),

" —
A= C13,— Cias Ay = Caq — Coay hg = C€yy — C1p — 20gq

(4.2)

Now, for the coefficients Bj, we have

By = Y45 (110g? 4 502 - 180452 + OAg>+ 50Agh, + 80AsAs -+ Bhghe + 200A,A,)

By = By =Ygy (41Ag? + 22542 + 680A¢ -+ 54hg® & 150A5h, + 280Aghs + 36h5h -+ 600RA,)
B, = Y5 (8he? + 14042 + 2TAe2 -+ 40A A, + 185he)

By = 8355 (T18h52 + 441042 + 1260005 + 477hg* -+ 3220A, + 5560Aghs + 318%ghg | 13720A405)
By = 4By = 515 (38hs? + 875Ag? - 27TAg2 + 10505k, + 355h5h; & 18hshgi+ T350A;)
By = Yyp5 (T9h5% + 13511? + 270A? 4 386Ms; -+ 180Ahy) - (4.3)
By = By = Wy0s (2052 ++ 4054, + 42002 -+ 9 + 90hgh, + 180Ashg —+ Bhohg + 420M0s)
By = Yyers (13052 - 245052 + 4207 -+ TOAghs + 28hgh,)
By = ¥y (8102 + 38542 + 15402 + 54 + 330Agh, + 660Aghs + 36Aghe - 15404,15)
Bya = Yags (50 + 21042 + 84hs% -+ 6Ae% + 18Agh, + 36Aghs + bhoke+ S4AM)

By = Yysrs (38hs2 4 10542 + 6652 -+ T2he2 + 0Ash, + 250hgh; + 48hAgi+ 4200As)

In this case
<oy = Y (15h+A; + 100, + 3hg), B> = 1/15 (152 + A5 4 104, + 3hg) {4.4)

The results for hexagonal symmetry can be obtained from Egs. (3.8)~(3.12), (4.3), and (4.4} by setting
Ag=0 in Egs. (4.3}, (4.4), and (4¢.2). For the long-wave approximation of longitudinal and transverse modes
as well as for the short-wave approximation of longitudinal modes we arrive at the familiar expressions
for the absorption coefficient [3] (see also [6]).
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The results for cubic symmetry (cj3= ¢yy, Cgg = Cy» C33 = Cyy) are obtained by recognizing that in this
case A3=Ay=A5 =0. The calculations yield

_ SRR <aHft [ 2 + 3 . 2 ahft /2 3
T =" 375p%3 ( oF T op ), T =T 12557 (“&}‘ ™ Tf“) (4.5)
v (fy=¢ (1—'-11'*az<a2>f2), v,‘(f):ct(1——a3——a4<a2>f2) (4.6)
+__ A6n%A <a) f2 +_ _2n®M¥<ay 2
T = T 5255%, T = ey (4.7)
vt=c(l+a), vr=c 1+ ay) 4.8)
2)6? 2 3 27 A® 106 6 147

h= 375p%,2 (cl'l + ¢’ )’ ag = 6425p%,? ( et + ¢ et + ¢t ) (4.9)

. Ae® 2 3 . 3akg® 49 2 75
= 250p%,* ( [ + o ) N 6125p%,2 ( e + PP + F) (4.10)

2he? (4o +¢) 13¢,2 + e,

G g %= M e @10
Mg =€y — Cra— 204, 0D =Yg (e + 41 — 2c40), B> = Y5 (crx — €12 1 3cqy) (4.12)

It is apparent from relations (3.8)-(4.12) that the absorption coefficients and wave velocities are cal-
culated for the case of orthorhombic symmetry in terms of seven parameters (P?, by, ..., bg), each of which
represents a quadratic function of the double-index elastic constants cik, for tetragonal symmetry in terms
of four parameters (A3, ..., Ay, for hexagonal symmetry in terms of three parameters (\3, ..., A5), and for
cubic symmetry in terms of one parameter (Ag, i.e., the number of indicated parameters is half the num-
ber of independent elastic constants ciji for the given symmetry.

5. It is apparent from the foregoing results that the attenuation factor depends strongly on the poly-
crystalline grain sizes. In the long-wave case this dependence is determined by the factor (a%), and in the
short~wave case by (2). In order to compare the theoretical results with experimental, it is required to go
from the variables {a%) and (a) to appropriate experimentally measured quantities, namely, the average
number of grains per unit area of the sample section or its equivalent characteristic, the average grain
diameter in the plane of the section (image diameter). This problem is unsolvable in the general case., It
is obvious, however, that the correlation scale o in the plane of the sample section is related to the volume
correlation scale @ by means of a certain numerical factor k. We then have

(a,) = klkd, <a2> = kzkzaza <a3> = k3k3a8 . (5 '1)

The coefficients ki are as follows for exponential and Gaussian distributions of the coordinate part of

the correlation functions [7], respectively:
k=1, ky = 4m, ks = 8nt (tp=exp~r/a). (5.2)

kl = 1/‘2 VR7 kz = 2“1 ks = MTTS (P = exp — r¥/a?) (5 3)

We see from this result that the coefficients k; and kg, which govern the short- and long-wave asymp-
totic behavior of the wave attenuation, ecan vary appreciably in transition from one structure to another.
Thus, the transition from an exponential to a Gaussian dependence for ¢(r) induces a 4.5-fold variation of
ks. The coefficient k is also structure-sensitive. For an elementary structure such as the spheroidal graph-
ite precipifations in pig iron 8] the ratio of the average grain diameter to the image diameter is 1.45. The
same result has been obtained by computer calculations of quasispherical polycrystalline grains [9]. On
the other hand, for grains of arbitrary configuration, needle-shaped for example, it is reasonable to expect
the ratio of the average grain and image diameters to be different [8].

The foregoing numerical estimates indicate that we should expect agreement of the theoretical and
experimental curves up to a constant factor depending on the structure. The value of the latter factor should
be several units. The long-wave asymptotic behavior of the scattering coefficient has been compared with
experiment in [6]. The theoretical equations used for verification in the latter paper are obtained from
the expressions derived here for the long-wave asymptotic behavior of the scattering coefficient by letting
ksk®=24 and o = Ty, Where ryyis the radius for which 50% of the grain imageshave adiameter smallerthan rg.

We point out that the comparison of the asymptotic behavior of long and short waves with experiment
makes it possible to draw certain inferences regarding the value of the ratio ks/k; and thus affords an in-
direct means of validating the choice of the function ¢(r).
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